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Abstract: The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors 
was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing 
properties were good for practical applications. The strain sensor with cylindrical shell encapsulation 
contained three tubular structures, due to the uneven surface structure, in the area of the strain 
concentration, improving the sensitivity. It could achieve the embedment strain measurement and 
surface measurement and had the advantages of the easy installation. The good agreement was 
obtained between the measurements and theoretical simulation results. After each calibration test, 
twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed 
on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we 
built up a long-term structure health system for the highway bridge. 
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1. Introduction 

The strain detection is an important physical 

quantity to evaluate the use and security situation of 

a highway bridge. In a traditional electric strain 

sensor, an electrical signal is the converted and 

transmitted carrier. Therefore, under the severe 

environment, it often brings out some problems. For 

example, the electromagnetic radiation can cause 

misinformation and inefficiency, too much humidity 

can cause a short circuit, and the high-temperature 

atmosphere can lead to fire. Meanwhile, serial 

electric sensors can not be connected with each  

other when the number of sensors is in a certain size. 

You need to put a lot of signal transmission cables 

and also need the appropriate size of the signal 

receiving and processing facilities, leading to an 

increase in the cost. In recent years, the fiber grating 

technology, which has been widely applied in 

various fields, has the following virtues: 

anti-electromagnetic radiation and convenient 

cascade of the signal without the aid of electricity on 

the spot [1, 2]. However, the bare fiber Bragg grating 

can only stand 2000 to 3000 micro strain, which can 

not satisfy the need of practical monitoring of 
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infrastructures, especially for the damage detection. 

On the other side, the sensing coefficient of the FBG 

is limited by the interrogator, and nowadays so far it 

can only detect 1 or 2 micro strain, which is not 

enough for the high-precision monitoring situation 

[3, 4]. So it is very necessary to bring forward a 

practical design method to enhance the FBG strain 

sensor’s sensitivity. Zhi Zhou [5] came up with an 

idea that an FBG sensor with the spring inside is 

able to enhance the range to   10000 . Ren Liang 

[6] proposed an FBG strain sensor which was 

clamped both the ends and miniature architectural 

models used in the seismic testing and dam model 

testing. 

In this paper, aiming at improving the sensitivity 

of the FBG strain sensors with the uneven surface 

structure, the principle of high sensitivity of the 

sensor is analyzed in detail, and the test method of 

the FBG strain sensor is discussed. Furthermore, the 

design of the FBG strain sensors was applied in 

Ningbo, a long-term structural health monitoring 

system of Diaoshuiyan bridge in Yongtaiwen 

highway. 

2. Description of the sensor 

The configuration of the sensor is shown in Fig.1. 

The structure of the sensor consists three parts: a 

measuring tube and two fixed tubes. All of them 

were made of stainless steel. A threaded connection 

between the measuring tube and the fixed tube, a 

stretched FBG was fixed to the two ends of      

the cavity in the measuring tube by using the 

adhesive. 

Fixed tube 

Measuring tube 
 

Fig. 1 Schematic structure of the FBG strain sensor. 

The lengths of the measuring tube and the fixed 

tube are 1l  and 2l , while 1s  and 2s  are the 

cross-sectional areas of the measuring tube and the 

fixed tube. Also the test length of the sensor is l . 

Assume that 1l , 2l , and l  are the variations 

of the lengths 1l , 2l , and l . When the strain sensor 

is subjected to a tensile force f , the following 

equation is given: 

1 2= +l l l   .             (1) 

Assume that 1 , 2 , and   are the strain values 

distributed in the measuring tube, the fixed tube, and 

the test object. While FBG  is the test value of the 

FBG, which is equal to 1 , the following equation is 

given 

1 1 2 2= +l l l   .             (2) 

The force distributed in the sensor is the same. E 

is the Young’s modulus of stainless steel, so the 

following equation is given: 

1 1 FBG 1 2 2f s E s E s E     .       (3) 

According to (2) and (3), the strain of the test 

object can be expressed as 

1 1 1 1
FBG

2 2

( )
l s l s

l s ls
    .          (4) 

Equation (4) can be given by 

1 2 1 2 FBG( )k k k k              (5) 

where 1k = 1l

l
, and 2k = 1

2

s

s
. In the actual design of 

the sensor, 1k =0.153, and 2k =0.352. So 

FBG


2.34. 

The change in the Bragg wavelength is given by 

(1 )eB BP K               (6) 

where Pe  is the photo-elastic coefficient of the fiber, 
and   is the strain. For the silica single-mode fiber, 

eP =0.22. The wavelength-strain sensitivity of the 
FBG in the silica fiber near 1550 nm is about    
1.17 pm/. In summary, the theoretical strain sensor 
strain sensitivity is 2.73 pm/. 

Therefore, the enhancing sensitivity of the 

sensor can be obtained by the above method. The 
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strain distribution of the sensor under the force was 

modeled by the ANSYS finite element software. We 

set parameters of each strain gauge according to the 

material properties. Constraints and loads were 

imposed on the fixed parts of the two ends of the 

carrier. The strain distributions were simulated, as 

shown in Fig. 2. The concentrated strain was mainly 

on the measuring tube. Software simulation and 

numerical simulation matched very well. 

 
Fig. 2 Force analysis of the strain sensor. 

3. Experimental results and analysis 

Figure 3 is a photograph of the strain sensor. As 

shown in Fig. 4, in order to avoid the looseness of 

the connection between the measuring tube and the 

fixed tub, we used laser welding to fix it. 

As shown in Fig. 5, we used a German “Zwick / 

Roell Z600E” universal testing machine to perform 

the test on the strain sensor. The testing machine 

was equipped with an automatic raster digital 

extensometer “Longstroke” (with the resolution of  

1 μm). 

 
Fig. 3 Photo of the FBG strain sensor. 

 
Fig. 4 Photo of the laser welding place in the sensor. 

 
Fig. 5 Photograph of the experiment. 

The tensile loading changed from 1 kN to 4 kN in 
steps of 0.5 kN, remaining at each step for at least  
5 seconds and then slowly decreased to 0 kN. This 
process was repeated three times. Figure 6 is the 
length change results of the strain sensor during 
three tests. Figure 7 is the linear fit of the average 
length change. Figure 8 is the wavelength change 
results of the strain sensor during three tests. Figure 

9 is the linear fit of the average wavelength change. 
From the figures below, after the calculation, we got 
that the sensitivity of the strain sensor was     
2.52 pm/. And the strain measurement test results 
were consistent with the theoretical calculation. For 
the long term monitoring system, we have produced 
24 strain sensors. After the calibration test, the 
sensitivity of the sensors ranged from 2.4 pm/ to 
2.8 pm/, both of which were consistent with the 
theoretical results. 
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Fig. 6 Length change results of the strain sensor during three 

tests. 
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Fig. 7 Linear fit of average length change. 
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Fig. 8 Wavelength change results of the strain sensor during 

three tests. 
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Fig. 9 Linear fit of the average length change. 

4. Long-term monitoring system 

Diaoshuiyan bridge in Yongtaiwen highway is 

located in Ningbo. The bridge structure is built in 
precast prestressed concrete box girder, across a 
total of four simple box girders, with each span 
length of 30 meters. After each calibration test, 
twenty-four FBG strain sensors and six FBG 
temperature compensation sensors have       
been installed on the undersurface of the first box 
girder of Diaoshuiyan bridge in Yongtaiwen 
highway. 

The sensor installation diagram is shown in  
Fig. 10. Twenty four strain sensors were divided into 
three columns, respectively, arranged in the first 
span bridge bottom 1/4, 1/2, 3/4 points across, each 
column for a group of eight strain sensors. At the 
ends of each group, a temperature compensation 
sensor was installed [7, 8]. The wavelength of the 
sensors in each column was different, connected 
with each other. Then, the connected signals of   
all the sensors were sent into the interrogator  
device. 

 

Strain sensor

PC 

Interrogator

Temperature sensor 

 
Fig. 10 Installation instruction of FBG strain sensors and 

temperature sensors. 

As shown in Fig. 11, we used the set screw nut 
and fixed the damper to get the strain sensor fixed 
on the measured object. Figure 12 is the realistic 
diagram of sensors’ installation. As shown in Fig. 13, 
the curve shows the measured strain values from  
one of the strain sensors during five months. 
Through experiments, it is proven that the sensing 
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system is stable enough to meet drawing 
requirements. 

 
Fig. 11 Installation method of the strain sensor. 

 
Fig. 12 Realistic diagram of sensors’ installation. 
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Fig. 13 Measured strain values from one of the strain sensors 

during five months. 

5. Conclusions 

In this research, we presented the structural 

design, performance test, and application of an 

enhanced sensitivity FBG strain sensor for the 

long-term structure health system of a highway 

bridge. Performance test results were consistent with 

the theoretical expectations of the sensor in the 

laboratory. After the test, twenty-four enhanced 

sensitivity FBG strain sensors and six FBG 

temperature sensors have been installed on the 

undersurface of the box girder of Diaoshuiyan 

bridge in Yongtaiwen highway. It can clearly and 

correctly detect the dynamic strain responses of the 

bridge during five months. This shows that the FBG 

sensor technology is a good alternative for civil and 

structural dynamic strain monitoring. 
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